LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin structure, magnetism, and cation distributions of NiFe 2-x Al x O 4 solid solutions

Photo by praveentcom from unsplash

Abstract Low temperature Mossbauer spectroscopy together with isothermal magnetization and zero-field-cooled and field-cooled measurements have been used to perform a systematic investigation of the cation distributions and magnetic properties of… Click to show full abstract

Abstract Low temperature Mossbauer spectroscopy together with isothermal magnetization and zero-field-cooled and field-cooled measurements have been used to perform a systematic investigation of the cation distributions and magnetic properties of solid solutions of NiFe2−xAlxO4 with x = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0. Mossbauer spectroscopy for the starting member of the series, NiFe2O4, shows that nickel atoms occupy the octahedral sites and are in 2+ oxidation state, while iron atoms, all in 3+ oxidation state, occupy equally the tetrahedral and the octahedral sites. When low concentration of aluminum, x = 0.4, is incorporated into the system, they substitute preferentially iron atoms in the octahedral sites. As the concentration of aluminum is increased, there are distributions of them in both the tetrahedral and octahedral sites leading to complex cation distributions. The magnetic characters of iron and nickel atoms and the diamagnetic nature of aluminum atoms and the complex cation distributions result in interesting magnetic properties for this class of materials. As the concentration of aluminum increases, the saturation magnetization decreases drastically and then gradually increases. In the end member of the series, NiAl2O4, the absent of any super-exchange interaction between the A-sites and the B-sites due to presence of Ni ions as the only magnetic atoms in the B-sites results in a paramagnetic structure and a magnetization close to zero although the nickel atoms have a spin moment of 2 μ B . This paramagnetic feature makes this compound to be considered as a magnetic resonant imaging agent. Another very interesting feature is the back and forth switching of the dominance of the magnetic moments in the tetrahedral sites and the octahedral sites as aluminum concentration increases.

Keywords: cation distributions; octahedral sites; spectroscopy; aluminum; solid solutions

Journal Title: Journal of Magnetism and Magnetic Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.