LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic phase diagrams of amorphous (Ni100-xFex)-metalloid alloys: The key role of the electronic density of states at the Fermi level for the onset of magnetic order

Photo by des0519 from unsplash

Abstract There have been extended studies on the appearance of ferromagnetism in transition-metal–metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD… Click to show full abstract

Abstract There have been extended studies on the appearance of ferromagnetism in transition-metal–metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD alloys upon the introduction of Fe where MD can represent a combination of various metalloid elements, while keeping the metal/metalloid ratio constant. It has been reported that adding a sufficient amount of Fe to a Pauli PM Ni-MD alloy matrix first induces a spin-glass (SG) state at low temperatures which goes over to a PM state at higher temperatures. Beyond a certain Fe content, xc, the SG state transforms to a FM state upon increasing the temperature. By plotting the characteristic transition temperatures as a function of the Fe content, a magnetic phase diagram can be constructed for each Ni-Fe-MD system which has a multicritical point (MCP) at xc. By using the reported magnetic phase diagrams of various Ni-Fe-MD alloy systems, it is shown that the critical Fe content, xc scales inversely with the density of states at the Fermi level, N(EF), of the parent Ni-MD matrix. This means that the higher the N(EF), the lower the critical Fe content to induce ferromagnetism in the Ni-MD matrix. This is then discussed in terms of the Stoner enhancement factor, S, which characterizes the tendency of the matrix to become ferromagnetic.

Keywords: ni100 xfex; phase; density states; phase diagrams; states fermi; magnetic phase

Journal Title: Journal of Magnetism and Magnetic Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.