Abstract A numerical method to simulate the ferrofluid particle distribution evolution is presented. Also, the optical transmission of the distributions obtained is calculated by two numerical methods. The first one… Click to show full abstract
Abstract A numerical method to simulate the ferrofluid particle distribution evolution is presented. Also, the optical transmission of the distributions obtained is calculated by two numerical methods. The first one consists on a numerical propagation of an electromagnetic wave through the sample. The second one analyzes the aggregates’ mean length to obtain the optical transmission through a mixture law. As an illustration of the possibilities of the method developed, it is applied to analyze how ferrofluid optical transmission changes after magnetic field application depend on intrinsic properties of the colloid such as its nanoparticle concentration and surfactant repulsion represented by means of the final distances between consecutive particles forming chains. Changes in the attenuation factor of these samples show the trends expected from the Literature.
               
Click one of the above tabs to view related content.