Abstract In the present work, using micromagnetic simulation, we show that the dipolar magnetic interaction effect plays a very important role in the process of creation of skyrmions in a… Click to show full abstract
Abstract In the present work, using micromagnetic simulation, we show that the dipolar magnetic interaction effect plays a very important role in the process of creation of skyrmions in a coupled system of nanodisks. First, we have determined the magnetic ground state in an isolated nanodisk for different values of perpendicular uniaxial anisotropy (PUA) and Dzyaloshinskii-Moriya interaction (DMI). Next, we have applied perpendicular pulse polarized current densities (J) and found that it is possible to create a metastable Neel skyrmion from a nanodisk whose ground state is a single magnetic domain. From these results, we obtained a phase diagram of polarized current intensity vs. time of application of the current pulses, for different values of parameters such as PUA, DMI, and distance between the nanodisks. Our results show that, depending on the separation distance between the nanodisks, the current density required to create a skyrmion changes, due to the dipolar magnetic interaction.
               
Click one of the above tabs to view related content.