LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transverse Zeeman magnetic field effects on the dynamical dielectric function of monolayer phosphorene: Beyond the continuum approximation

Photo from wikipedia

Abstract In this paper, we theoretically address the transverse Zeeman magnetic field effects on the frequency-dependent dynamical dielectric function of phosphorene including the refractive index and the absorption coefficient. An… Click to show full abstract

Abstract In this paper, we theoretically address the transverse Zeeman magnetic field effects on the frequency-dependent dynamical dielectric function of phosphorene including the refractive index and the absorption coefficient. An effective Hamiltonian model beyond the continuum approximation is employed to obtain the electronic dispersion energy. The linear response theory is applied to calculate the dynamical dielectric function at a certain temperature along both armchair and zigzag edges. Our numerical calculations show that, independent of the direction, the refraction (absorption) intensity decreases (increases) with the optical frequency at all magnetic field strengths. Moreover, we find out that the refraction and absorption processes along the armchair edge do not change after a critical magnetic field and this critical point increases with the optical frequency stemming from the spin-splitting effects. As for the zigzag edge, however, there is a little to no change for these processes with the magnetic field. Further, we observe that, on the average, the dominant contribution to the total magnetic field-dependent dynamical dielectric function comes from the armchair edge originating from the smaller (larger) carrier effective mass (velocity) than the zigzag edge. Tuning the optical responses of phosphorene with the transverse Zeeman magnetic field is useful for practical spintronic applications.

Keywords: field; transverse zeeman; dynamical dielectric; dielectric function; magnetic field

Journal Title: Journal of Magnetism and Magnetic Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.