LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of low melting point powder doping on the properties and microstructure of sintered NdFeB magnets

Photo from wikipedia

Abstract The effects of Al, Sn and Zn nano-powders doping on the magnetic properties and microstructure of sintered NdFeB was investigated. The separate doping of Al and Zn can improve… Click to show full abstract

Abstract The effects of Al, Sn and Zn nano-powders doping on the magnetic properties and microstructure of sintered NdFeB was investigated. The separate doping of Al and Zn can improve the coercivity (Hcj). Al and Zn powder co-doping at 0.6 wt% resulted in an increase in magnetic remanence (Br) and coercivity in 0.68 kGs and 1.04 kOe, respectively. Al-Zn co-doping can form a low-melting-point phase in the magnet, which enhanced the wettability between the grain boundary phase and the main phase and improved the rare-earth(RE)-rich phase ratio significantly. The structure and distribution of the RE-rich phase changed from clustering at the triangular grain boundary to thin and continuous distribution along with the crystal, which suppressed the demagnetization coupling between the hard magnetic phase and enhanced the coercivity. Although low-melting-point Sn doping can form a low-melting-point phase, the poor wettability between the main phase lead to RE-rich phase agglomerate formation at the triangular grain boundary, a deterioration in continuity of the grain boundary and a decrease in the remanence and coercivity.

Keywords: phase; melting point; microstructure sintered; properties microstructure; low melting

Journal Title: Journal of Magnetism and Magnetic Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.