LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic and magnetocaloric properties of a foam composite based on substituted La-manganite in a polyurethane matrix

Photo by eiskonen from unsplash

Abstract This work deals with the effect that a porous structure causes on the magnetocaloric properties of substituted lanthanum manganite with the formula La0.67Ca0.28Sr0.05MnO3. A composite with a foam structure… Click to show full abstract

Abstract This work deals with the effect that a porous structure causes on the magnetocaloric properties of substituted lanthanum manganite with the formula La0.67Ca0.28Sr0.05MnO3. A composite with a foam structure was fabricated using a polyurethane matrix and embedded manganite particles at three different amounts. The magnetocaloric effect was determined indirectly by mathematical adjustment of the experimental magnetization curves as a function of temperature, according to the phenomenological model proposed by Hamad. Based on the phenomenological parameters, the magnetic entropy change, ΔSm (H, T), was calculated at 1.5 T and 3.0 T. Also, the Curie temperature, the relative cooling power, RCP, the heat capacity, ΔCp, and the order of the ferromagnetic-paramagnetic transition of all the samples were determined. Results show a highlighting increase of the relative cooling power when the manganite particles are dispersed in the polymeric matrix. In addition, the magnetocaloric properties turned out to be a function of the amount of manganite embedded in the matrix. Better results were obtained at a lower manganite content. In all the studied cases, the magnetocaloric properties of the foam composite are better than that of the powder. This behavior is attributable to a change in the interaction state of the manganite particles due to the confinement that they undergo in the polymeric matrix.

Keywords: foam composite; polyurethane matrix; magnetocaloric properties; properties foam

Journal Title: Journal of Magnetism and Magnetic Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.