Abstract To study linguistically coded concepts, researchers often resort to the Property Listing Task (PLT). In a PLT, participants are asked to list properties that describe a concept (e.g., for… Click to show full abstract
Abstract To study linguistically coded concepts, researchers often resort to the Property Listing Task (PLT). In a PLT, participants are asked to list properties that describe a concept (e.g., for DOG, subjects may list “is a pet”, “has four legs”, etc.), which are then coded into property types (i.e., superficially dissimilar properties such as “has four legs” and “is a quadruped” may be coded as “four legs”). When the PLT is done for many concepts, researchers obtain Conceptual Properties Norms (CPNs), which are used to study semantic content and as a source of control variables. Though the PLT and CPNs are widely used across psychology, there is a lack of a formal model of the PLT, which would provide better analysis tools. Particularly, nobody has attempted analyzing the PLT’s listing process. Thus, in the current work we develop a mathematical description of the PLT. Our analyses indicate that several regularities should be found in the observable data obtained from a PLT. Using data from three different CPNs (from 3 countries and 2 different languages), we show that these regularities do in fact exist and generalize well across different CPNs. Overall, our results suggest that the description of the regularities found in PLT data may be fruitfully used in the study of concepts.
               
Click one of the above tabs to view related content.