LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-dimensional modeling of necking in rate-dependent materials

This paper presents an asymptotically rigorous one-dimensional analytical formulation capable of accurately capturing the stress and strain distributions that develop within the evolving neck of bars and sheets of rate-dependent… Click to show full abstract

This paper presents an asymptotically rigorous one-dimensional analytical formulation capable of accurately capturing the stress and strain distributions that develop within the evolving neck of bars and sheets of rate-dependent materials stretched in tension. The work is an extension of an earlier study by the authors on necking instabilities in rate-independent materials. The one-dimensional model accounts for the gradients of the stress and strain that develop as the necking instability grows. Material strain-rate dependence has a significant influence on the strain that can be imposed on a bar or sheet before necking becomes pronounced. The formulation in this paper enables a quantitative assessment of the interplay in necking retardation due to rate-dependence and that due to the development of hydrostatic tension in the neck. The connection with a much simpler long-wavelength approximation which does not account for curvature induced hydrostatic tension in the neck is also emphasized and extended.

Keywords: materials one; dimensional modeling; rate dependent; dependent materials; rate; one dimensional

Journal Title: Journal of the Mechanics and Physics of Solids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.