LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A master equation for spin systems far from equilibrium.

Photo by tabithaturnervisuals from unsplash

The quantum dynamics of spin systems is often treated by a differential equation known as the master equation, which describes the trajectories of spin observables such as magnetization components, spin… Click to show full abstract

The quantum dynamics of spin systems is often treated by a differential equation known as the master equation, which describes the trajectories of spin observables such as magnetization components, spin state populations, and coherences between spin states. The master equation describes how a perturbed spin system returns to a state of thermal equilibrium with a finite-temperature environment. The conventional master equation, which has the form of an inhomogeneous differential equation, applies to cases where the spin system remains close to thermal equilibrium, which is well satisfied for a wide variety of magnetic resonance experiments conducted on thermally polarized spin systems at ordinary temperatures. However, the conventional inhomogeneous master equation may fail in the case of hyperpolarized spin systems, when the spin state populations deviate strongly from thermal equilibrium, and in general where there is a high degree of nuclear spin order. We highlight a simple case in which the inhomogeneous master equation clearly fails, and propose an alternative master equation based on Lindblad superoperators which avoids most of the deficiencies of previous proposals. We discuss the strengths and limitations of the various formulations of the master equation, in the context of spin systems which are far from thermal equilibrium. The method is applied to several problems in nuclear magnetic resonance and to spin-isomer conversion.

Keywords: equation; master equation; spin systems; thermal equilibrium

Journal Title: Journal of magnetic resonance
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.