LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of the cold working induced martensite on the electrochemical behavior of AISI 304 stainless steel surfaces

Photo from wikipedia

Abstract It is clear that the corrosion resistance of carbon steels decreases as cold working amount increases, but for austenitic stainless steels, the relation between cold-working and corrosion performance is… Click to show full abstract

Abstract It is clear that the corrosion resistance of carbon steels decreases as cold working amount increases, but for austenitic stainless steels, the relation between cold-working and corrosion performance is not clear. The electrochemical behavior of AISI 304 stainless steel with 3 different cold working amounts is characterized by Mott–Schottky analysis, OCP records, EIS and cyclic polarization curves. An innovative cell with gel electrolyte is used for an easy study of the deformed surfaces without modifying them. After the polarization tests, the influence of the deformation on the amount of pits and on their morphological characteristics is also analyzed. The microstructural changes caused by cold rolling are studied, and the residual stresses are determined by XRD using the sin2 ψ method. It is proved that AISI 304 stainless steel decreases its pitting resistance in a medium with chlorides when it is subjected to moderate cold rolling, but heavy thickness reduction causes a subsequent recovery of corrosion resistance. The results obtained suggest that this trend is related to changes in the magnitude and type of the stresses (tensile or compressive) on the surface of the material.

Keywords: 304 stainless; stainless steel; cold working; aisi 304

Journal Title: Journal of Materials Research and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.