LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cold rolling performance for austenitic stainless steel with equilibrium and non-equilibrium microstructures

Photo from wikipedia

Abstract Aiming to provide effective theoretical guidance for continuous rolling, the cold rolling with reduction of 45% was carried out for the equilibrium and non-equilibrium microstructures of austenitic stainless steel… Click to show full abstract

Abstract Aiming to provide effective theoretical guidance for continuous rolling, the cold rolling with reduction of 45% was carried out for the equilibrium and non-equilibrium microstructures of austenitic stainless steel (ASS). The microstructural evolution, texture components and tensile properties were investigated. The results showed that the fraction of martensite transformed from austenite is 21.1% for the equilibrium base metal (BM), while that for the non-equilibrium weld metal (WM) achieves 32.0%. Whether employing rolling or not, the fraction of misorientation larger than 15° within the BM is much higher than that of the WM because of the large amount of twins. Moreover, the texture of the rolled BM is mainly composed of Goss component with small amount of S and Brass, while that of the WM is composed of mainly S and small amount of Brass, with formation of Copper component. The tensile strength of the rolled BM and WM reaches approximately 1300 MPa, the elongation rate of the BM decreases from 53% to 5.7%, while that of the WM decreases from 32% to 3.5%. The microstructure evolutions of the BM and WM during rolling were compared, and the microstructure-mechanical properties relation was established and discussed based on martensitic nucleation.

Keywords: equilibrium microstructures; cold rolling; equilibrium; austenitic stainless; non equilibrium; equilibrium non

Journal Title: Journal of materials research and technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.