LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macrosegregation under new flow pattern and temperature distribution induced by electromagnetic swirling flow in nozzle during continuous casting of square billet

Photo by kellysikkema from unsplash

Abstract Forced convection induced by mold electromagnetic stirrer (M-EMS) improves solidification structure in continuous casting of high carbon square billet, but vigorous stirring also causes macrosegregation. In this study, electromagnetic… Click to show full abstract

Abstract Forced convection induced by mold electromagnetic stirrer (M-EMS) improves solidification structure in continuous casting of high carbon square billet, but vigorous stirring also causes macrosegregation. In this study, electromagnetic swirling flow in nozzle (EMSFN) was applied together with the M-EMS to optimize flow field and temperature distribution in the mold. The industrial test results showed that when the stirring directions of the two electromagnetic devices were opposite and the current parameter of the EMSFN device was 50 Hz, 400 A, the equiaxed crystal ratio increased 15% compared with that by using the M-EMS only, and the macrosegregation of carbon was minimized simultaneously. The investigation on the growth direction of columnar crystal indicated that in the upper part of the mold the heat transfer in different directions and the weakened forced convection were the key factors to prevent the solute element from being depleted at the edge and to reduce the centerline positive segregation in the billet.

Keywords: macrosegregation; electromagnetic swirling; swirling flow; continuous casting; square billet; flow

Journal Title: Journal of materials research and technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.