LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioengineering, characterization, and biological activities of C@Cu2O@Cu nanocomposite based-mediated the Vicia faba seeds aqueous extract

Photo from wikipedia

Abstract Vicia faba seeds are a rich source of polyphenolic, and flavonoid compounds that have high antioxidant activity. The aqueous extract of V. faba seeds has been used for the… Click to show full abstract

Abstract Vicia faba seeds are a rich source of polyphenolic, and flavonoid compounds that have high antioxidant activity. The aqueous extract of V. faba seeds has been used for the biosynthesis of a nanocomposite (NC) consisting of three different types of nanoparticles that are deposited onto each other as C@Cu2O@Cu. Physicochemical, optical, electrical, and morphological properties of the as-biofabricated C@Cu2O@Cu NC were characterized using different analytical techniques as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Ultraviolet–visible spectroscopy (UV–Vis), Photoluminescence (PL), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX), Raman, Zeta-potential, and water/moisture content). Results confirmed that V. faba seeds aqueous extract mediated the fabrication of C@Cu2O@Cu NC at high and pure crystalline nature. The nano-formulation had a face center cubic crystallographic system at the nano-scale range using Debye–Scherrer's equation (13.8 nm) in XRD analysis and (20.9 ± 6.2 nm) using TEM analysis. The crystallinity index (1.6) with a large surface area and polycrystalline nature were being investigated. In addition, the biological activity of the synthesized NC was analyzed. C@Cu2O@Cu NC showed high anti-inflammatory activity compared with diclofenac potassium with IC50 = 213.3 μg/mL. Moreover, the nano-formulation had a potent antibacterial activity, particularly against Gram-negative bacteria. Cytotoxicity of the C@Cu2O@Cu NC against MCF7, HCT116, and HepG2 cell lines showed efficient cytotoxic impact with IC50 = 84.8, 116.1, and 120.5 μg/mL, respectively. So, the nanocomposite C@Cu2O@Cu may provide a promising platform for the effective treatment of different types of cancer.

Keywords: microscopy; aqueous extract; spectroscopy; faba seeds; vicia faba

Journal Title: Journal of materials research and technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.