LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical heterostructured FeCr–(Mg–Mg2Ni) composite with 3D interconnected and lamellar structures synthesized by liquid metal dealloying

Photo from wikipedia

Abstract Liquid metal dealloying (LMD) has recently attracted significant attention. Because the LMD process enables the production of three-dimensional (3D) interconnected non-noble metallic materials. In addition, the metallic melt medium… Click to show full abstract

Abstract Liquid metal dealloying (LMD) has recently attracted significant attention. Because the LMD process enables the production of three-dimensional (3D) interconnected non-noble metallic materials. In addition, the metallic melt medium is useful for the development of heterostructure (HS) metal–metal composites. However, the solidified liquid metal phase (low melting point metals such as Mg, Bi, Sn, or Cu) has a much lower strength than the developed ligament phase (e.g., Fe, FeCr, Ti, etc.). In this study, the soft Mg phase was strengthened by adding alloying element of Ni. A eutectic composition of Mg–10 at.% Ni melt leads to the formation of fine eutectic structure of (Mg–Mg2Ni) within 3D interconnected morphology. This hierarchical heterostructured composite consisted of FeCr ligament and Mg–Mg2Ni lamellar, and a high yield strength of 280 MPa and a noticeable elongation (1.5%) were achieved. The complex 3D morphology of ligament and lamellar geometrically constraint each other, and it prevents the early fracture of brittle Mg–Mg2Ni lamellar phase. The alloy design for the LMD melt gives insights for hierarchical HS materials with outstanding mechanical properties for structural applications.

Keywords: hierarchical heterostructured; liquid metal; metal; metal dealloying; mg2ni; phase

Journal Title: Journal of materials research and technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.