LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo

Photo by pask_07 from unsplash

Abstract The estimation of remaining useful life (RUL) of machinery is a major task in prognostics and health management (PHM). Recently, prognostic performance has been enhanced significantly due to the… Click to show full abstract

Abstract The estimation of remaining useful life (RUL) of machinery is a major task in prognostics and health management (PHM). Recently, prognostic performance has been enhanced significantly due to the application of deep learning (DL) models. However, only few authors assess the uncertainty of the applied DL models and therefore can state how certain the model is about the predicted RUL values. This is especially critical in applications, in which unplanned failures lead to high costs or even to human harm. Therefore, the determination of the uncertainty associated with the RUL estimate is important for the applicability of DL models in practice. In this article, Bayesian DL models, that naturally quantify uncertainty, were applied to the task of RUL estimation of simulated turbo fan engines. Inference is carried out via Hamiltonian Monte Carlo (HMC) and variational inference (VI). The experiments show, that the performance of Bayesian DL models is similar and in many cases even beneficial compared to classical DL models. Furthermore, an approach for utilizing the uncertainty information generated by Bayesian DL models is presented. The approach was applied and showed how to further enhance the predictive performance.

Keywords: estimation; uncertainty; monte carlo; useful life; hamiltonian monte; remaining useful

Journal Title: Journal of Manufacturing Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.