LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multichannel sleep spindle detection using sparse low-rank optimization

Photo by jonathecreator from unsplash

BACKGROUND Automated single-channel spindle detectors, for human sleep EEG, are blind to the presence of spindles in other recorded channels unlike visual annotation by a human expert. NEW METHOD We… Click to show full abstract

BACKGROUND Automated single-channel spindle detectors, for human sleep EEG, are blind to the presence of spindles in other recorded channels unlike visual annotation by a human expert. NEW METHOD We propose a multichannel spindle detection method that aims to detect global and local spindle activity in human sleep EEG. Using a non-linear signal model, which assumes the input EEG to be the sum of a transient and an oscillatory component, we propose a multichannel transient separation algorithm. Consecutive overlapping blocks of the multichannel oscillatory component are assumed to be low-rank whereas the transient component is assumed to be piecewise constant with a zero baseline. The estimated oscillatory component is used in conjunction with a bandpass filter and the Teager operator for detecting sleep spindles. RESULTS AND COMPARISON WITH OTHER METHODS The proposed method is applied to two publicly available databases and compared with 7 existing single-channel automated detectors. F1 scores for the proposed spindle detection method averaged 0.66 (0.02) and 0.62 (0.06) for the two databases, respectively. For an overnight 6 channel EEG signal, the proposed algorithm takes about 4min to detect sleep spindles simultaneously across all channels with a single setting of corresponding algorithmic parameters. CONCLUSIONS The proposed method attempts to mimic and utilize, for better spindle detection, a particular human expert behavior where the decision to mark a spindle event may be subconsciously influenced by the presence of a spindle in EEG channels other than the central channel visible on a digital screen.

Keywords: detection; component; method; sleep; low rank; spindle detection

Journal Title: Journal of Neuroscience Methods
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.