LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal

Background: fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal. New Methods: We… Click to show full abstract

Background: fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal. New Methods: We present temporal multivariate pattern analysis (tMVPA), a method for investigating the temporal evolution of neural representations in fMRI data, computed on single-trial BOLD time-courses, leveraging both spatial and temporal components of the fMRI signal. We implemented an expanding sliding window approach that allows identifying the time-window of an effect. Results: We demonstrate that tMVPA can successfully detect condition-specific multivariate modulations over time, in the absence of mean BOLD amplitude differences. Using Monte-Carlo simulations and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at the group and single-subject levels, FWER was either at or significantly below 5%. We reached the desired power with 18 subjects and 12 trials for the group level, and with 14 trials in the single-subject scenario. Comparison with existing methods: We compare the tMVPA statistical evaluation to that of a linear support vector machine (SVM). SVM outperformed tMVPA with large N and trial numbers. Conversely, tMVPA, leveraging on single trials analyses, outperformed SVM in low N and trials and in a single-subject scenario. Conclusion: Recent evidence suggesting that the BOLD signal carries finer-grained temporal information than previously thought, advocates the need for analytical tools, such as tMVPA, tailored to investigate BOLD temporal dynamics. The comparable performance between tMVPA and SVM, a powerful and reliable tool for fMRI, supports the validity of our technique.

Keywords: temporal multivariate; trial; multivariate; tmvpa; multivariate pattern; temporal dynamics

Journal Title: Journal of neuroscience methods
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.