LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct simulation of rigid particles in a viscoelastic fluid

Photo from archive.org

In this paper, we present a numerical method which performs the direct simulation of 2D viscoelastic suspensions. Objectives. Interactions between viscoelastic fluids of Oldroyd type, including inertial effects, and a… Click to show full abstract

In this paper, we present a numerical method which performs the direct simulation of 2D viscoelastic suspensions. Objectives. Interactions between viscoelastic fluids of Oldroyd type, including inertial effects, and a large number of rigid spheres or ellipsoids are addressed. Method. The numerical method is built upon a fictitious domain approach which consists in defining the fluid-structure problem over the whole domain (fluid+solid). In the Newtonian case, the resulting variational formulation, although classical, uses non-standard functional spaces which include the rigidity constraints. From the numerical point of view, these constraints can be addressed by penalty methods, leading to the possible use of standard finite elements solvers with fixed structured meshes. We show how this approach can be adapted to viscoelastic fluids of Oldroyd type. Results. Two types of configurations are investigated in dilute and dense regimes: sedimentation of spherical particles and shear flows with ellipsoidal particles.

Keywords: fluid; rigid particles; particles viscoelastic; direct simulation; simulation rigid

Journal Title: Journal of Non-newtonian Fluid Mechanics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.