LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical order in Ge-Ga-Sb-Se glasses

Photo from academic.microsoft.com

Abstract The short range order in Ge30Ga5Sb10Se55 and Ge21Ga5Sb10Se64 glasses was investigated by X-ray (XRD) and neutron diffraction (ND) as well as extended X-ray absorption fine structure (EXAFS) measurements at… Click to show full abstract

Abstract The short range order in Ge30Ga5Sb10Se55 and Ge21Ga5Sb10Se64 glasses was investigated by X-ray (XRD) and neutron diffraction (ND) as well as extended X-ray absorption fine structure (EXAFS) measurements at the Ge, Ga, Sb and Se K-edges. Large scale structural models were obtained by fitting simultaneously the experimental data sets by reverse Monte Carlo (RMC) simulation technique. It was found that Ge, Sb and Se atoms follow the Mott-rule and have 4, 3 and 2 nearest neighbors, respectively. The average coordination number of the Ga atoms was around 4. The structure of these glasses can be described by the chemically ordered network model: the Ge–Se, Ga–Se and Sb–Se bonds are the most prominent while Ge–Ge and Ge–Sb bonds are formed only in Se-poor compositions. Models generated by RMC contained some long distances (0.3–0.4 A higher than the usual covalent bond lengths) between Ge–Se and/or Ge–Ge pairs. Dedicated simulation runs confirm the existence of these bonds.

Keywords: chemical order; order glasses; order

Journal Title: Journal of Non-crystalline Solids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.