LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Niobium- and bismuth-silver phosphate glasses for the conditioning of radioactive iodine

Photo from wikipedia

Abstract Iodine 129 is a radioactive waste produced by the nuclear industry. Due to its high volatility, it cannot be vitrified in conventional borosilicate glasses. This paper investigates the feasibility… Click to show full abstract

Abstract Iodine 129 is a radioactive waste produced by the nuclear industry. Due to its high volatility, it cannot be vitrified in conventional borosilicate glasses. This paper investigates the feasibility of iodine conditioning using a glass matrix intended for long-term storage in a geological repository. Silver phosphate glasses, which can incorporate high amounts of iodine and can be synthesized at low temperature, were chosen for this study. In order to increase their chemical durability, the glasses were cross-linked by niobium and bismuth oxides. Niobium and bismuth incorporation limits were determined for an iodine amount of 12 wt% and ranged from 1.6 mol% to 4.0 mol%, depending on the Ag2O/P2O5 ratio. The glass structures were investigated using 31P MAS NMR, RAMAN spectroscopy and X-ray absorption spectroscopy. The iodine local environment was determined by EXAFS at iodine K-edge. Structural investigations showed that the introduction of these crosslinking reagents induces a significant increase in the polymerization degree of the glasses. However despite this higher connectivity, the two crosslinking reagents have a low impact on the glass transition temperature after iodine addition.

Keywords: iodine; niobium bismuth; spectroscopy; silver phosphate; phosphate glasses

Journal Title: Journal of Non-Crystalline Solids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.