LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films

Photo from wikipedia

Abstract Polyvinyl alcohol (PVA) nanocomposite films embedded with iron (Fe) nanoparticles were prepared via the solution cast technique. The effect of Fe nanoparticles on the structural and optical properties of… Click to show full abstract

Abstract Polyvinyl alcohol (PVA) nanocomposite films embedded with iron (Fe) nanoparticles were prepared via the solution cast technique. The effect of Fe nanoparticles on the structural and optical properties of PVA nanocomposite films were investigated using X-ray diffraction, a scanning electron microscope, and UV–Vis spectroscopy. The size of the Fe nanoparticles was calculated using the Debye–Scherrer equation, and it was found that there was an increase in nanoparticle size after dispersion in the polymer matrix due to aggregation. Optical parameters such as optical band gap, Urbach energy, refractive index and extinction coefficient were investigated. The transmittance of a pure PVA film decreases from 82% to 18% after 3 wt% Fe nanoparticle dispersion in a polymer matrix. The direct optical band gap was found to decrease whereas Urbach energy was found to increase with the increase in Fe nanoparticle concentration. In addition, the refractive index and extinction coefficient of polymer nanocomposite films were found to increase compared to those made of pure PVA. Also, the optical dielectric and optical conductivity were observed to increase with an increase in Fe nanoparticle concentration.

Keywords: nanocomposite films; polyvinyl alcohol; increase; optical properties; effect nanoparticles

Journal Title: Journal of Non-Crystalline Solids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.