LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of acid leaching surface treatment on indentation cracking of soda lime silicate glass

Photo from wikipedia

Abstract Past work has shown that water or acid soaking treatments can increase the mechanical strength of soda lime silicate (SLS) glasses. In this work, we show that acid leaching… Click to show full abstract

Abstract Past work has shown that water or acid soaking treatments can increase the mechanical strength of soda lime silicate (SLS) glasses. In this work, we show that acid leaching treatments result in an increase in the apparent crack resistance of the acid-leached surface of SLS glass during indentation. Vickers indentation tests in controlled environments show a humidity dependence of radial cracking, suggesting that the transport of water through the leached layer plays a critical role in the propagation of cracks to the glass surface. Molecular dynamics simulations with reactive force fields indicate that the leached surface layer can undergo pressure-induced mechanochemical reactions during indentation, which increases the bridging oxygen connectivity in the silica network of the leached layer. Such structural changes can hinder transport of water molecules from the environment to the subsurface crack tip. Based on experimental observations and simulation results, a new hypothesis is proposed that mechanochemical restructuring in the leached layer in response to the applied load may lower the transport kinetics of molecular water to critical flaws, resulting in an apparent enhancement in the crack resistance of the acid-leached surface of SLS glass.

Keywords: glass; surface; indentation; lime silicate; soda lime; acid

Journal Title: Journal of Non-crystalline Solids
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.