LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consecutive primes and Beatty sequences

Photo from archive.org

Fix irrational numbers $\alpha,\hat\alpha>1$ of finite type and real numbers $\beta,\hat\beta\ge 0$, and let $B$ and $\hat B$ be the Beatty sequences $$ B:=(\lfloor\alpha m+\beta\rfloor)_{m\ge 1}\quad\text{and}\quad\hat B:=(\lfloor\hat\alpha m+\hat\beta\rfloor)_{m\ge 1}. $$… Click to show full abstract

Fix irrational numbers $\alpha,\hat\alpha>1$ of finite type and real numbers $\beta,\hat\beta\ge 0$, and let $B$ and $\hat B$ be the Beatty sequences $$ B:=(\lfloor\alpha m+\beta\rfloor)_{m\ge 1}\quad\text{and}\quad\hat B:=(\lfloor\hat\alpha m+\hat\beta\rfloor)_{m\ge 1}. $$ In this note, we study the distribution of pairs $(p,p^\sharp)$ of consecutive primes for which $p\in B$ and $p^\sharp\in\hat B$. Under a strong (but widely accepted) form of the Hardy-Littlewood conjectures, we show that $$ \big|\{p\le x:p\in B\text{ and }p^\sharp\in\hat B\}\big|=(\alpha\hat\alpha)^{-1}\pi(x)+O\big(x(\log x)^{-3/2+\epsilon}\big), $$ where $\pi(x)$ is the prime counting function.

Keywords: beatty sequences; consecutive primes; hat alpha; primes beatty; alpha hat

Journal Title: Journal of Number Theory
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.