Let $n$ and $k$ be integers such that $1\le k\le n$ and $f(x)$ be a nonzero polynomial of integer coefficients such that $f(m)\ne 0$ for any positive integer $m$. For… Click to show full abstract
Let $n$ and $k$ be integers such that $1\le k\le n$ and $f(x)$ be a nonzero polynomial of integer coefficients such that $f(m)\ne 0$ for any positive integer $m$. For any $k$-tuple $\vec{s}=(s_1, ..., s_k)$ of positive integers, we define $$H_{k,f}(\vec{s}, n):=\sum\limits_{1\leq i_{1}<\cdots
               
Click one of the above tabs to view related content.