LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct and inverse theorems on signed sumsets of integers

Photo from archive.org

Let $G$ be an additive abelian group and $h$ be a positive integer. For a nonempty finite subset $A=\{a_0, a_1,\ldots, a_{k-1}\}$ of $G$, we let \[h_{\underline{+}}A:=\{\Sigma_{i=0}^{k-1}\lambda_{i} a_{i}: (\lambda_{0}, \ldots, \lambda_{k-1})… Click to show full abstract

Let $G$ be an additive abelian group and $h$ be a positive integer. For a nonempty finite subset $A=\{a_0, a_1,\ldots, a_{k-1}\}$ of $G$, we let \[h_{\underline{+}}A:=\{\Sigma_{i=0}^{k-1}\lambda_{i} a_{i}: (\lambda_{0}, \ldots, \lambda_{k-1}) \in \mathbb{Z}^{k},~ \Sigma_{i=0}^{k-1}|\lambda_{i}|=h \},\] be the {\it signed sumset} of $A$. The {\it direct problem} for the signed sumset $h_{\underline{+}}A$ is to find a nontrivial lower bound for $|h_{\underline{+}}A|$ in terms of $|A|$. The {\it inverse problem} for $h_{\underline{+}}A$ is to determine the structure of the finite set $A$ for which $|h_{\underline{+}}A|$ is minimal. In this article, we solve both the direct and inverse problems for $|h_{\underline{+}}A|$, when $A$ is a finite set of integers.

Keywords: theorems signed; direct inverse; sumsets integers; signed sumsets; inverse theorems

Journal Title: Journal of Number Theory
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.