LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variants of Khintchine's theorem in metric Diophantine approximation

Photo from archive.org

New results towards the Duffin-Schaeffer conjecture, which is a fundamental unsolved problem in metric number theory, have been established recently assuming extra divergence. Given a non-negative function $\psi: \mathbb{N}\to\mathbb{R}$ we… Click to show full abstract

New results towards the Duffin-Schaeffer conjecture, which is a fundamental unsolved problem in metric number theory, have been established recently assuming extra divergence. Given a non-negative function $\psi: \mathbb{N}\to\mathbb{R}$ we denote by $W(\psi)$ the set of all $x\in\mathbb{R}$ such that $|nx-a| 0$ such that $\sum_{n=2}^\infty\psi(n)\varphi(n)/(n(\log n)^\varepsilon)=\infty$. This result seems to be the best one can expect from the method used. Assuming the extra divergence $\sum_{n=2}^\infty\psi(n)/(\log n)^\varepsilon=\infty$ we prove that $W(\psi)$ is of full measure. This could also be deduced from the result in [1], but we believe that our proof is of independent interest, since its method is totally different from the one in [1]. As a further application of our method, we prove that a variant of Khintchine's theorem is true without monotonicity, subject to an additional condition on the set of divisors of the support of $\psi$.

Keywords: variants khintchine; psi; diophantine approximation; theorem metric; metric diophantine; khintchine theorem

Journal Title: Journal of Number Theory
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.