Abstract The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past… Click to show full abstract
Abstract The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.
               
Click one of the above tabs to view related content.