LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A coupled rate theory-Monte Carlo model of helium bubble evolution in plasma-facing micro-engineered tungsten

Photo from wikipedia

Abstract A multiscale model of helium bubble evolution in plasma-facing materials is developed. The model links different stages of helium bubble evolution: deposition, nucleation, growth, motion, and coalescence. Helium deposition… Click to show full abstract

Abstract A multiscale model of helium bubble evolution in plasma-facing materials is developed. The model links different stages of helium bubble evolution: deposition, nucleation, growth, motion, and coalescence. Helium deposition is simulated with the SRIM Monte Carlo program to give spatial information on helium and displacement damage distributions near the surface. This deposition profile is then introduced into a space-dependent rate theory of bubble nucleation and growth to describe the early stages of the distribution and size of helium bubbles. The coarsening stage of bubble evolution as a result of whole bubble motion, interaction, and coalescence is modeled by a new Object Kinetic Monte Carlo (OKMC) model, for which initial conditions are taken from the mean-field rate theory calculations. The model is compared to experimental data on low-energy helium plasma interaction with micro-engineered tungsten (W), and on high-energy helium ion deposition in flat W samples. Novel features of the multiscale model include: (1) space-dependent rate theory; (2) OKMC model of bubble motion in stress and temperature fields; and (3) application of the model to micro-engineered materials, and comparison with experiments on the same time-scale. At low helium ion energy, it is found that the mechanism of trap mutation is essential in achieving good agreement with experimental measurements. On the other hand, good agreement with experiments at high incident ion energy and temperature showed the importance of bubble coalescence and coarsening as main mechanisms. The results of the model are compared with experiments on flat W surfaces irradiated at high ion energy (30 keV), and with micro-engineered W, where the surface is coated with high-density micro-pillars at low ion energy (around 100 eV). The predicted average bubble radius and density are in qualitative agreement with experimental results.

Keywords: micro engineered; model; bubble evolution; rate theory; helium

Journal Title: Journal of Nuclear Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.