LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing the corrosion of uranium nitride and uranium dioxide surfaces with H2O2

Photo from archive.org

Uranium mononitride, UN, is considered a potential accident tolerant fuel due to its high uranium density, high thermal conductivity, and high melting point. Compared with the relatively inert UO2, UN… Click to show full abstract

Uranium mononitride, UN, is considered a potential accident tolerant fuel due to its high uranium density, high thermal conductivity, and high melting point. Compared with the relatively inert UO2, UN has a high reactivity in water, however, studies have not considered the significant effect of radiation, which is known to cause corrosion of UO2. This study uses 0.1 M H2O2 to simulate the effects of water radiolysis in order to compare the radiolytic corrosion rates of UO2, UN, and U2N3 thin films at room temperature. X-ray reflectivity was used to investigate the changes in film morphology as a function of H2O2 exposure time, allowing changes in film thickness and roughness to be observed on the Angstrom length-scale. Results showed significant differences between UO2, UN, and U2N3, with corrosion rates of 0.083(3), 0.020(4), and 0.47(8) A/s, respectively, showing that UN corrodes more slowly than UO2 in 0.1 M H2O2.

Keywords: corrosion uranium; uranium; comparing corrosion; nitride uranium; corrosion; uranium nitride

Journal Title: Journal of Nuclear Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.