LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Texture analyses and microstructural evolution in monolithic U-Mo nuclear fuel

Photo from wikipedia

Abstract This work describes the microstructural evolution of prototypical monolithic U-Mo fuel plates analyzed via scanning electron microscopy and electron backscattered diffraction (EBSD). The understanding of the microstructural and textural… Click to show full abstract

Abstract This work describes the microstructural evolution of prototypical monolithic U-Mo fuel plates analyzed via scanning electron microscopy and electron backscattered diffraction (EBSD). The understanding of the microstructural and textural evolution of nuclear fuel from as-fabricated to post-irradiation is important in assessing changes in material properties during irradiation. In our work it was observed that the typical fabrication techniques applied in U-10Mo monolithic fuel plates develop features associated with a cold-rolled body-centered cubic (bcc) texture and development of α and γ fiber (parallel to the rolling and normal direction). After irradiation, a loss of the fabrication-induced preferred orientation was observed with an increased spread of grain-boundary misorientation as burnup increases. Grain subdivision was observed in the irradiated samples with the formation of submicron grains (200–500 nm). Evidence for polygonization as the mechanism leading to grain subdivision was detected. This has been observed for the first time for U-Mo monolithic fuel via EBSD and has been associated to formation of low-angle grain boundaries (

Keywords: evolution; microstructural evolution; monolithic fuel; texture analyses; nuclear fuel; fuel

Journal Title: Journal of Nuclear Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.