LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shear bond behavior of composite slabs with ultra-lightweight cementitious composite

Photo from wikipedia

Abstract This study investigates the structural behavior and shear bond strength of composite slabs composed of profiled steel deck and ultra-lightweight cementitious composite (ULCC). ULCC topping with a density of… Click to show full abstract

Abstract This study investigates the structural behavior and shear bond strength of composite slabs composed of profiled steel deck and ultra-lightweight cementitious composite (ULCC). ULCC topping with a density of about 1440 kg/m 3 was used to reduce the dead weight of the composite slabs. An experimental investigation was carried out to determine the shear bond characteristics between the profiled steel sheet and the ULCC. Eight composite slabs of different shear spans were tested in accordance with EN 1994-1-1:2004, in which six slabs contained ULCC and the remaining two slabs contained normal weight concrete (NWC) to serve as a benchmark for comparison. The shear bond behavior of the ULCC composite slabs was compared to that of the NWC slabs using two sets of slabs with short and long shear span lengths. The composite slabs with ULCC topping showed higher ductile behavior and load-carrying capacity than the composite slabs with NWC topping. The shear bond properties of the composite slab with ULCC were determined using the semi-empirical m−k method and the partial shear connection method (PSC) according to EN 1994-1-1:2004. For comparison purposes, the shear bond properties of NWC composite slabs were determined. ULCC was found to provide equivalent shear bond strength with profiled steel sheet compared to the conventional composite slab with NWC. Therefore, ULCC can be used effectively in composite slabs with a greater reduction in self-weight.

Keywords: ultra lightweight; shear bond; composite slabs; behavior

Journal Title: Journal of Building Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.