LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitivity analysis of skeletal reaction mechanisms for use in CFD simulation of oxygen enhanced combustion systems

Photo from wikipedia

Abstract Oxygen enhanced combustion (OEC) techniques are supposed to be a fuel saving alternative to conventional air-fired combustion, due to the reduction or removal of nitrogen from the combustion system,… Click to show full abstract

Abstract Oxygen enhanced combustion (OEC) techniques are supposed to be a fuel saving alternative to conventional air-fired combustion, due to the reduction or removal of nitrogen from the combustion system, which causes a higher flame temperature and radiation intensity. Therefore, more heat is available in OEC for heating, melting and annealing processes, and subsequently, increases the process efficiency. The main aim of the present study is the numerical investigation of different reaction mechanisms under air-fuel and oxy-fuel conditions using 1D simulation of laminar counter-flow diffusion flames. The mechanisms are further used in 3D CFD simulation with the steady laminar flamelet model for the development of a time efficient numerical approach, applicable in air-fuel and OEC. Three skeletal reaction mechanisms were tested and compared to the GRI3.0 mechanism. The calculated temperatures and species concentrations revealed that a skeletal mechanism with 17 species and 25 reversible reactions predicts a faster fuel conversion into the reaction products under oxy-fuel conditions, which leads to higher temperatures in the flame compared to the GRI3.0. Sensitivity analysis showed that two reversible reactions are mainly responsible for the faster fuel conversion. Furthermore, the reaction mechanisms investigated, were used for 3D CFD simulation of a lab-scale furnace under different OEC conditions and air-fuel combustion. Up to concentrations of 30% O 2 in the O 2 /N 2 mixture, all reaction mechanisms were able to predict the temperatures in the furnace with a close accordance to measured data. With higher oxygen enrichment levels, only the mentioned skeletal mechanism with 25 reactions calculated good results, whereas the GRI3.0 failed for oxy-fuel combustion.

Keywords: reaction mechanisms; fuel; combustion; cfd simulation

Journal Title: Journal of The Energy Institute
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.