LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic effect for co-coking of sawdust and coal blending based on the chemical structure transformation

Photo from wikipedia

Abstract Biomass was used as additives in coal blending for making coke in terms of widening the alternative raw materials and reducing CO2 emissions. To obtain the influences of biomass… Click to show full abstract

Abstract Biomass was used as additives in coal blending for making coke in terms of widening the alternative raw materials and reducing CO2 emissions. To obtain the influences of biomass incorporation on the semicoke formation, the chemical structure transformation as well as the gas evolution during sawdust (SD)/coal blending (BC) co-coking were investigated using in-situ Fourier transform infrared spectroscopy coupled with mass spectrometry (In-situ FTIR-MS). Meanwhile, the role of biomass in the semicoke formation was also characterized by several analytical techniques. The transformation of the five main functional groups between SD and BC exhibited the largest difference, and the synergistic effect based on the chemical structure transformation was also proposed for the SD/BC blends co-coking. The synergistic effect based on the chemical structure transformation was divided into two stages during semicoke formation. One stage occurred at 100–280 °C that was assigned to the physical effect that inhibited the BC decomposition. Another stage happened at 280–500 °C that was mainly attributed to the hydrogen transfer that enhanced the aromatization of semi-coke. In addition, it was also noted that the thermoplastic properties decreased proportionately to the quantity of the SD, and the non-agglomeration between BC and SD was clearly observed by SEM.

Keywords: structure transformation; coal blending; chemical structure; effect

Journal Title: Journal of The Energy Institute
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.