LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Properties of Glide Path Preparation Instruments with Different Pitch Lengths

Photo from wikipedia

Introduction: This study compared the effects of pitch length on the torsional resistance and cyclic fatigue resistance of glide path preparation instruments. Methods: G‐File (G1 and G2; Micro‐Mega, Besançon, France)… Click to show full abstract

Introduction: This study compared the effects of pitch length on the torsional resistance and cyclic fatigue resistance of glide path preparation instruments. Methods: G‐File (G1 and G2; Micro‐Mega, Besançon, France) and new generation G‐File (NG1 and NG2, Micro‐Mega) instruments were compared to evaluate the effects of the shorter pitch of the latter (25% shorter than G‐File). G1 and NG1 have a #12 tip size, whereas G2 and NG2 have a #17 tip size. All the files have the same taper of 3%. For comparing the torsional resistances (n = 15), the file was fixed at 4 mm from the tip, and the clockwise rotation at a constant rotational speed of 2 rpm was adjusted until the file fractured. The maximum torsional load and distortion angle at fracture were recorded. For comparing the cyclic fatigue resistances (n = 15), the files were freely rotated in a simulated canal (radius, 3 mm; curvature, 90°) at a speed of 300 rpm in a dynamic mode. When the file fractured, the time elapsed was recorded using a chronometer. The number of cycles to failure was calculated by multiplying the total time to failure by the rotation rate. Fractured fragments were examined under the scanning electron microscope. Results: The NG2 instruments had significantly higher fatigue resistance and torsional strength than the G2 instruments (P < .05) and showed approximately the same fatigue resistance as the G1. Scanning electron microscopic examinations revealed the typical appearances of 2 failure modes. Conclusions: A shorter pitch design increased cyclic fatigue resistance and torsional strength of the glide path instruments. HIGHLIGHTSThis study compared the effects of pitch length on torsional resistance and cyclic fatigue resistance of glide path preparation instruments.G‐File (G1 and G2) and new generation G‐File (NG1 and NG2) instruments were compared.The NG2 instruments had significantly higher cyclic fatigue resistance and torsional strength than the G2 (P < .05).Glide path instruments with a shorter pitch had increased cyclic fatigue resistance and torsional strength.

Keywords: pitch; glide path; resistance; cyclic fatigue; fatigue resistance

Journal Title: Journal of Endodontics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.