LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Group VIII carbamoyl complexes as catalysts for alkyne hydrocarboxylation and electrochemical proton reduction

Photo by papaioannou_kostas from unsplash

Abstract A series of group VIII carbamoyl complexes, [M(2-NHC(O)C5H4N)(CO)2(2-SC5H4N)] [where M = Fe, Ru and Os], was found to be efficient and regioselective catalysts for the intramolecular hydroxycarboxylation of α,ω-alkynoic acids, yielding… Click to show full abstract

Abstract A series of group VIII carbamoyl complexes, [M(2-NHC(O)C5H4N)(CO)2(2-SC5H4N)] [where M = Fe, Ru and Os], was found to be efficient and regioselective catalysts for the intramolecular hydroxycarboxylation of α,ω-alkynoic acids, yielding exocyclic enol lactones for ring sizes up to 7 atoms, and endocyclic enol lactones for ring sizes up to 12 atoms. They also catalysed the regioselective intermolecular hydroxycarboxylation reaction between propargylic alcohol and carboxylic acids to form β-oxo-esters. These complexes could also function as electrocatalysts in proton reduction, and evaluation of their redox potentials revealed that the iron complex was much more efficient than the ruthenium or osmium analogues.

Keywords: group viii; carbamoyl complexes; proton reduction; viii carbamoyl

Journal Title: Journal of Organometallic Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.