LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graded Bandgap CsPbI2+xBr1−x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%

Photo by rgaleriacom from unsplash

Summary All-inorganic perovskite shows great potential for photovoltaic applications due to its excellent solar cell performance and atmospheric stability. Here, a CsPbI2+xBr1−x perovskite solar cell with a graded bandgap is… Click to show full abstract

Summary All-inorganic perovskite shows great potential for photovoltaic applications due to its excellent solar cell performance and atmospheric stability. Here, a CsPbI2+xBr1−x perovskite solar cell with a graded bandgap is explored using CsPbBrI2 and CsPbI3 quantum dots as component cells. Four strategies were pursued to boost the device performance. First, CsPbI2Br film was fabricated as the main absorber, with the component cell showing remarkable power conversion efficiency (PCE) as high as 13.45%. Second, by Mn2+ substitution, SCN− capping, and [(NH2)2CH]+ treatment, stable and high-mobility CsPbI3 quantum dot (QD) film was attained. Third, a halide-ion-profiled heterojunction was designed at the CsPbBrI2/CsPbI3 QD interface to achieve proper band-edge bending as graded bandgap for improved carrier collection. Finally, the CsPbI3 QD layer was optimized in the graded bandgap structure to achieve maximum overall light harvesting. As a result, the device achieved a PCE of 14.45%. This is the highest efficiency ever reported for inorganic perovskite solar cells.

Keywords: graded bandgap; cspbi2 xbr1; perovskite solar; efficiency; perovskite

Journal Title: Joule
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.