LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Divisibility of L-polynomials for a family of Artin–Schreier curves

Photo by gcalebjones from unsplash

In this paper we consider the curves $C_k^{(p,a)} : y^p-y=x^{p^k+1}+ax$ defined over $\mathbb F_p$ and give a positive answer to a conjecture about a divisibility condition on $L$-polynomials of the… Click to show full abstract

In this paper we consider the curves $C_k^{(p,a)} : y^p-y=x^{p^k+1}+ax$ defined over $\mathbb F_p$ and give a positive answer to a conjecture about a divisibility condition on $L$-polynomials of the curves $C_k^{(p,a)}$. Our proof involves finding an exact formula for the number of $\mathbb F_{p^n}$-rational points on $C_k^{(p,a)}$ for all $n$, and uses a result we proved elsewhere about the number of rational points on supersingular curves.

Keywords: artin schreier; schreier curves; family artin; divisibility; polynomials family; divisibility polynomials

Journal Title: Journal of Pure and Applied Algebra
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.