Graphical abstract Figure. No Caption available. HighlightsPhotocatalytic degradation of clotrimazole by TiO2/ZnO under UVA irradiation.UPLC method development for determination of clotrimazole in the presence of its photocatalytic degradation products.Structural characterization… Click to show full abstract
Graphical abstract Figure. No Caption available. HighlightsPhotocatalytic degradation of clotrimazole by TiO2/ZnO under UVA irradiation.UPLC method development for determination of clotrimazole in the presence of its photocatalytic degradation products.Structural characterization of fourteen presumable photodegradation products of clotrimazole using UPLC–MS/MS.In vitro cytotoxic assessment using the Human skin fibroblast cell line. Abstract In order to ensure the safe and effective use of pharmaceutical products especially for topical administration photostability testing is necessary. The current paper presents an in‐depth analysis of the stability of one of the most common antifungal agents, namely clotrimazole. Clotrimazole has proven to be stable under UVA irradiation in applied experimental conditions, but the presence of catalysts such as ZnO and TiO2 has contributed significantly to the degradation of this compound. The findings indicate that its photocatalytic degradation reactions followed the pseudo first‐order kinetics with rate constant depending on the pH and the used solvent. Using LC–MS/MS, 14 presumable degradation products of clotrimazole were identified and the plausible transformation pathways were proposed. The in vitro cytotoxicity risk evaluation based on photostability of clotrimazole was also performed using the Human skin fibroblast cell line (BJ) ATCC™ CRL‐2522. There was no statistically significant difference between cells viability in all analyzed combinations of clotrimazole, TiO2/ZnO, and UVA irradiation (p < 0.05).
               
Click one of the above tabs to view related content.