LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UIISScan 1.1: A Field portable high-throughput platform tool for biomedical and agricultural applications.

Photo by tylercaseyprod from unsplash

The colorimetric sensing technology has evolved into an essential tool for high-throughput analysis including portability and cost-effectiveness among available biomedical and agricultural screening approach. In this endeavor, the objective of… Click to show full abstract

The colorimetric sensing technology has evolved into an essential tool for high-throughput analysis including portability and cost-effectiveness among available biomedical and agricultural screening approach. In this endeavor, the objective of work is to focus on the development of a field-portable instrument based on an Uniform Illumination Imaging System (UIIS), which will facilitate the colorimetric biochemical sensing. The developed field-portable, wavelength independent UIIS has been exploited for (a) rotavirus detection using commercial enzymatic immunoassay based microplate kit; (b) pesticide residue detection and quantification; The proposed system exhibited a good correlation in comparison to another two conventional techniques, i.e., multi-plate reader (r = 0.9991938) and LC-MS/MS (r = 0.998877399) with a short analysis time of 5 min for 95 test samples. Moreover, the feasibility of UIIS system has also been explored as field-portable enzyme-linked immunosorbent assay (ELISA) plate reader. By incorporating the Mahalanobis distance calculation, the advanced algorithm has been investigated and developed to analyze the data. The overall dataset was transformed into a matrix format to give a good correlation with a conventional plate reader, i.e., r = 0.915389612. Internet of things (IoT) enabled decision support system can be exploited by using big data analytics. Finally, test results can be shared with concerned stakeholders and the remote users. Thus, the developed UIIS will help to identify potential public health threats expeditiosly compared to conventional time consuming process of sample submission to the laboratory for analysis.

Keywords: field portable; field; tool; biomedical agricultural; high throughput

Journal Title: Journal of pharmaceutical and biomedical analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.