LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A rapid and specific method to simultaneously quantify eukaryotic elongation factor 1A1 and A2 protein levels in cancer cells.

Photo by nci from unsplash

BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It… Click to show full abstract

BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.

Keywords: eukaryotic elongation; elongation factor; protein levels; cancer; cell

Journal Title: Journal of pharmaceutical and biomedical analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.