LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal shift assay: Strengths and weaknesses of the method to investigate the ligand-induced thermostabilization of soluble guanylyl cyclase.

Photo by charlesdeluvio from unsplash

Thermal shift assay is a fluorescence dye based biochemical method to determine the melting point of a protein. It can be used to investigate the ligand-induced stabilization of proteins and… Click to show full abstract

Thermal shift assay is a fluorescence dye based biochemical method to determine the melting point of a protein. It can be used to investigate the ligand-induced stabilization of proteins and helps to increase the likelihood of crystallization in biological samples. Dimeric proteins like soluble guanylyl cyclase (sGC) have specific structural and functional properties which may pose a challenge in thermal shift measurements. In this paper, thermal shift assay was used to examine ligand-induced thermostabilization of the dimeric heme-containing protein soluble guanylyl cyclase. Adjustment of the parameters buffer solution, pH, protein / dye ratio and protein amount per well yielded a one-phase melting curve of sGC with a sharp transition and high reproducibility. We found that thermal shift measurement is not affected by heme state or heme content of the enzyme preparation. We used the method to investigate the thermostabilization of sGC induced by the heme-mimetic activator drugs cinaciguat, BAY 60-2770 and BR 11257 in combination with non-hydrolyzable nucleotides. Measurements with the dicarboxylic drugs cinaciguat and BAY 60-2770 yielded steep melting curves with high amplitudes. In contrast, in the presence of the monocarboxylic sGC activator BR 11257, melting curves appear flattened in the dye-based measurements. In the present paper, we show that activity-based thermostability measurements are superior to dye-based measurements in detecting the thermostabilizing influence of sGC activator drugs.

Keywords: shift; shift assay; ligand induced; soluble guanylyl; guanylyl cyclase; thermal shift

Journal Title: Journal of pharmaceutical and biomedical analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.