LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast screening test for molecular recognition of levodopa and dopamine in biological samples using 3D printed stochastic microsensors.

Photo by nci from unsplash

The simultaneous assay of levodopa and dopamine is essential for diagnosis and treatment of neurodegenerative diseases and brain cancer. 3D stochastic microsensors based on multi-walled carbon nanotubes (MWCNTs), gold nanoparticles… Click to show full abstract

The simultaneous assay of levodopa and dopamine is essential for diagnosis and treatment of neurodegenerative diseases and brain cancer. 3D stochastic microsensors based on multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and 1-adamantyloleamide (AOA) was used for the simultaneous molecular recognition of levodopa and dopamine in biological samples (whole blood, urine, and brain tissue). The proposed 3D stochastic microsensors presented low limits of quantification, and high sensitivities. High selectivity was recorded versus neurotransmitters such as epinephrine, norepinephrine, serotonin, and glutamate. High recoveries were obtained for the assay of both levodopa and dopamine in whole blood, urine, and tumor tissue samples.

Keywords: dopamine biological; stochastic microsensors; biological samples; molecular recognition; recognition levodopa; levodopa dopamine

Journal Title: Journal of pharmaceutical and biomedical analysis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.