LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructured calcium cobalt oxide Ca3Co4O9 as thermoelectric material. Effect of nanostructure on local coordination, Co charge state and thermoelectric properties

Photo from wikipedia

Abstract The preparation of pure Ca3Co4O9 materials in the form of dense bodies made of nano-sized grains was investigated by combining a sol-gel route, different thermal cycles, a ball-milling post-treatment… Click to show full abstract

Abstract The preparation of pure Ca3Co4O9 materials in the form of dense bodies made of nano-sized grains was investigated by combining a sol-gel route, different thermal cycles, a ball-milling post-treatment and final densification with HP-FAST (High Pressure-Field Assisted Sintering). We found that an effective way for obtaining nano-sized compact bodies with only a marginal increase of the particle sizes of the original powder was the operation of HP-FAST at extremely high pressures (up to 430 MPa) and comparatively low temperatures. A ball-milling treatment before HP-FAST compaction was then required to hinder the large plastic deformation occurring when using these pressures. In contrast, un-milled powders could be densified by HP-FAST only at lower pressure and therefore required higher temperatures, thus losing their nanostructure. For all powders, X-ray absorption spectroscopy assessed a mean Co oxidation state slightly higher than III, coupled to absence of localized Co(II) and presence of localized Co(IV). Ball milling induced a decrease of the mean oxidation state of Co coupled to an increased disorder. The latter effect was confirmed by X-ray Absorption Fine Structure. Nanostructure had a complex effect on the different properties of compact bodies. According to the different conditions of HP-FAST, densities of 75–98% were achieved; the decrease in thermal conductivity was of a factor 2–3, while the electronic transport properties – in particular electrical conductivity – of nano-sized compact bodies were reduced to a larger extent with respect to their micro-sized counterparts. This demonstrates that, for bulk Ca3Co4O9 materials, nanostructure was not an effective approach toward a performing thermoelectric material.

Keywords: state; ca3co4o9; nano sized; thermoelectric material; effect; nanostructure

Journal Title: Journal of Physics and Chemistry of Solids
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.