Abstract In this work, lithium plating is investigated by means of voltage relaxation and in situ neutron diffraction in commercial lithium-ion batteries. We can directly correlate the voltage curve after… Click to show full abstract
Abstract In this work, lithium plating is investigated by means of voltage relaxation and in situ neutron diffraction in commercial lithium-ion batteries. We can directly correlate the voltage curve after the lithium plating with the ongoing phase transformation from LiC 12 to LiC 6 according to the neutron diffraction data during the relaxation. Above a threshold current of C/2 at a temperature of −2 °C, lithium plating increases dramatically. The results indicate that the intercalation rate of deposited lithium seems to be constant, independent of the deposited amount. It can be observed that the amount of plating correlates with the charging rate, whereas a charging current of C/2 leads to a deposited amount of lithium of 5.5% of the charge capacity and a current of 1C to 9.0%.
               
Click one of the above tabs to view related content.