Abstract The aim of the paper is to present a promising approach for recycling high value-added metals from the cathode materials of spent LIBs. The synthesis process of NCM cathode… Click to show full abstract
Abstract The aim of the paper is to present a promising approach for recycling high value-added metals from the cathode materials of spent LIBs. The synthesis process of NCM cathode material enlightened us to apply reduction roasting to break LiNi x Co y Mn z O 2 into simple compounds or metals. Accordingly, the effect of several factors such as temperature, carbon dosage and roasting time is assessed on the leaching efficiency of valuable metals. The roasted products are analyzed by XRD and SEM-EDS, and the results show that the cathode material after reduction roasting is primarily transformed into Li 2 CO 3 , Ni, Co and MnO. However, the solubility of Li 2 CO 3 is relatively low, so carbonated water leaching is used to treat the roasted products. Then the filtrate is evaporated for the preparation of pure Li 2 CO 3 , and residue is leached to recycle other metals with H 2 SO 4 . The results indicate that, after roasted at 650 °C for 3 h with 19.9% carbon dosage, 84.7% Li is preferentially recovered via carbonated water leaching, and more than 99% Ni, Co and Mn are recycled via acid leaching without adding reductant. Finally, the products of Li 2 CO 3 , NiSO 4 , CoSO 4 and MnSO 4 are obtained. The process have great potential for industrial-scale recycling from spent LIBs.
               
Click one of the above tabs to view related content.