LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon conductor- and binder-free organic electrode for flexible organic rechargeable batteries with high energy density

Photo from wikipedia

Abstract For the first time, we report a poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-based organic electrode with 100 wt% active material loading. The electrochemical performance of the PTMA electrode for organic batteries was… Click to show full abstract

Abstract For the first time, we report a poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-based organic electrode with 100 wt% active material loading. The electrochemical performance of the PTMA electrode for organic batteries was improved by replacing the aluminum current collector by graphite ones. The use of graphite current collector reduces the cell weight and increases its mechanical flexibility. The resulting battery with the new carbon conductor- and binder-free organic electrode with polyimide-based gel polymer electrolyte (GPE) displayed significantly higher increased energy density (470 Wh kg−1 vs. cell weight), which is essential for making organic batteries competitive with conventional Li ion batteries.

Keywords: binder free; carbon conductor; organic electrode; conductor binder; electrode; free organic

Journal Title: Journal of Power Sources
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.