Abstract This study aims to correlate the active triple phase boundaries (TPBs) to the variation of as-prepared anode microstructures and Ni densifications based on the reconstructed 3D volume of an… Click to show full abstract
Abstract This study aims to correlate the active triple phase boundaries (TPBs) to the variation of as-prepared anode microstructures and Ni densifications based on the reconstructed 3D volume of an SOFC anode, providing a point of comparison with theoretical studies that reveal the relationship of TPBs and the material microstructure using randomly packed spheres models. The TPB degradation mechanisms are explained using a particle network model. The results indicate that in low porosity regime, the TPBs sharply increase with the porosity until the percolation threshold (10%); at intermediate porosity (10%–25%), a balance of surface area between three phases is more critical than that of volume fraction to reach the optimal TPB density; in the high porosity regime (>25%), the TPBs start to drop due to the shrinkage and detachment of Ni/YSZ interfaces. The TPB density is inversely proportional to the degree of Ni densification as long as the Ni content is above the percolation threshold (35%) and can be improved by 70% within 7% change of porosity provided that the over-densification is mitigated. This has implications for the design of SOFC microstructures as well for electrode durability, where Ni agglomeration is known to deleteriously impact long-term operation.
               
Click one of the above tabs to view related content.