LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li 2 MnO 3-δ obtained from pristine Li 2 MnO 3

Photo from archive.org

Abstract Lithium-rich manganese(IV) oxide Li2MnO3 has hardly any activity as the cathode active substance of lithium-ion batteries (LIBs) but its reversible capacity can be greatly improved by introducing oxygen deficiencies.… Click to show full abstract

Abstract Lithium-rich manganese(IV) oxide Li2MnO3 has hardly any activity as the cathode active substance of lithium-ion batteries (LIBs) but its reversible capacity can be greatly improved by introducing oxygen deficiencies. After the solid-state heat treatment of nanocrystalline Li2MnO3 by sodium borohydride (NaBH4), the resulting Li2MnO3-δ crystallites comparatively acquire distinguishable appearances in color and shape and slight differences in surface composition and lattice structure. As a LIB cathode within the potential range of 2.5–4.7 V, at 20 mA g−1 pristine Li2MnO3 gives the specific discharge capacities of 3.3, 5.0 and 7.4 mAh·g−1 in the 1st, 10th and 100th cycles, while the derivative Li2MnO3-δ delivers the relatively high values of 64.8, 103.8 and 140.2 mAh·g−1 in the 1st, 10th and 120th cycles, respectively. Aside from the similar phenomenon of gradual electrochemical activation, substituting Li2MnO3-δ for Li2MnO3 means the great enhancements of charge-transfer ability and electrochemical performances. Especially, the cationic-anionic redox mechanisms of Li2MnO3 and Li2MnO3-δ are similar to each other, suggesting a possible solution to prepare high-performance xLi2MnO3-δ·(1-x)LiMO2 solid solutions for application purposes.

Keywords: li2mno3; characteristics enhanced; structural characteristics; modified structural; mno; enhanced electrochemical

Journal Title: Journal of Power Sources
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.