LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-temperature solid electrolyte interphases (SEI) in graphite electrodes

Photo by fabiooulucas from unsplash

Abstract Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to… Click to show full abstract

Abstract Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

Keywords: solid electrolyte; high temperature; electrolyte interphases; electrolyte; temperature solid

Journal Title: Journal of Power Sources
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.